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Abstract 

Neural networks were used to generalize common themes found in transmembrane-spanning  protein helices. 
Various-sized databases were  used containing nonoverlapping sequences, each 25 amino acids long. Training con- 
sisted of sorting these sequences into 1 of 2 groups:  transmembrane helical peptides or nontransmembrane pep- 
tides. Learning was measured using a test set 10% the size of the training set. As training set size increased from 
214 sequences to 1,751 sequences, learning increased in a nonlinear manner from 75% to a high of 98%, then 
declined to a low of 87%. The final training  database consisted of roughly equal  numbers of transmembrane (928) 
and nontransmembrane (1,018) sequences. All transmembrane sequences were entered into  the database with re- 
spect to their lipid membrane  orientation: from inside the membrane to outside. Generalized transmembrane he- 
lix and nontransmembrane peptides were constructed from  the maximally weighted connecting strengths of fully 
trained  networks. Four generalized transmembrane helices  were found  to contain 9 consensus residues: a K-R-F 
triplet was found  at  the inside lipid interface, 2 isoleucine and 2 other phenylalanine residues were present in the 
helical body, and 2 tryptophan residues  were found near the outside lipid interface. As a test of the training method, 
bacteriorhodopsin was examined to determine the position of its 7 transmembrane helices. 
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The  goal  of much of modern  protein science is to solve the 
problem of the second code - to determine the folded structure 
(tertiary  structure)  of  a  functional  protein based on primary 
structure  information of its constituent amino acids. Even 
though the tertiary structure of a  protein can be complex, it is 
composed of peptide  units held together by repeating patterns 
of hydrogen bonds called secondary  structure (Sasagawa & 
Tajima, 1993). Continuous sequences of amino acids are broadly 
classified into various secondary structures including a-helix, 0- 
sheet, and random-coil regions. A sure sign of progress toward 
the goal of tertiary  structure prediction would be reliable deter- 
mination of secondary structure  from  amino acid sequence in- 
formation (Bohr et al., 1988). 

One of the newer techniques to be applied to problems of pro- 
tein structure is that of neural networks - computer  programs 
that can  detect patterns  and correlations in data by learning to 
place increasing weight on critical information and reducing or 
ignoring other  information (Hirst & Sternberg, 1992). Neural 
networks are well suited to  the problem  of gleaning structural 
information  from local amino acid patterns. Neural  networks 
can be trained on examples of amino acid  sequences  with known 
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secondary structures,  then tested with a  different set of known 
sequences for evaluation  of test accuracy. A number of  inves- 
tigators have already applied neural networks to cytosolic pro- 
teins (Qian & Sejnowski, 1988; Holley & Karplus, 1989; Kneller 
et al., 1990; Hayward & Collins, 1992) and also to 1 transmem- 
brane  protein,  rhodopsin (Bohr et al., 1988). 

Even though secondary-structure determination is the penul- 
timate  goal of primary structure analysis, there is information 
to be learned from analysis of secondary structure for its own 
sake. Our interest is  in expanding the use of neural network tech- 
niques for secondary-structure analysis by a  more  thorough ex- 
amination of the helical regions in transmembrane proteins. To 
this end, we created a  sorting  task for a neural network that re- 
quired the correct classification of equal length peptides to either 
of 2 groups:  transmembrane helical peptides or nontransmem- 
brane peptides. In the process of learning to make these classi- 
fications  correctly, the network was forced to generalize from 
the training examples and set up a matrix of internal weights that 
represented those amino acids important to the  structure of the 
transmembrane helix. 

We  will report our results of this classification task and show 
evidence that  a commercially available, desktop computer-based 
neural network program can successfully  discern general features 
of  the transmembrane helical regions and can also distinguish 
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these features from globular  peptide segments of equal length. 
Learning curves will  be presented showing the effects of train- 
ing set size, addition of data noise, and placement of the heli- 
cal region in the training set sequence. Summary tables will also 
be presented showing the effects of these variables on test set 
sorting accuracy. A table showing  false-positive and false-negative 
test set assignments will  be presented.  A Hinton diagram will 
be presented to show the relative strengths of neural weight con- 
nections from the weight matrix of a fully trained network. Ex- 
amples will be presented of “generalized” transmembrane 
sequences and “generalized” nontransmembrane sequences 
based on these neural weight connections from 4 fully trained 
networks.  Finally,  a complete protein,  bacteriorhodopsin, will 
be searched for correct placement of its known transmembrane 
helices. 

Results and discussion 

Neural network software 

The use of neural networks to recognize complex patterns is a 
potential  tool for  the protein scientist. The ability to use a neu- 
ral network is made easier  by the commercial availability of pro- 
grams such as BrainMaker, which run on  an IBM-PC  type 
computer. We ran  this  program on 2  different  computers. Our 
early  neural  networks, with databases less than 500 sequences, 
were trained in about 2  h on a 286 computer with a  math co- 
processor. Later  neural  networks, with databases  containing 
500-1,750 sequences, were trained in  1-2 h on a 386 computer 
with a  math  coprocessor. We found it convenient that this par- 
ticular  neural network-generating program, BrainMaker, al- 
lowed for the  representation of a  peptide sequence as a series 
of letters and numbers (e.g., A1 T2 K3 . . . G25). This repre- 
sentation was more easily understood than the  commonly used 
but less obvious method of representing the  data  as a sequence 
of binary 1’s and 0’s (Bohr et al., 1988;  Holley & Karplus, 1989; 
Ladunga et al., 1991). 

In  order to accommodate  a peptide length of 25, we designed 
all  neural  networks with 500 input  neurons (20 amino acids X 
25 positions) plus 1 threshold input neuron, 1 hidden neuron and 
1 hidden threshold neuron,  and 2 output neurons, giving a  to- 
tal of 505 neural  connections. Using 500 input neurons  permit- 
ted the  amino acid window to be long enough to span the length 
of the transmembrane region (1  8-20 amino acids) while main- 
taining  a  number below the 512 input neuron limit imposed by 
Brainmaker standard version software.  The decision to design 
neural networks with a single neuron in the hidden layer was 
made so as to allow for the construction of the generalized trans- 
membrane and generalized nontransmembrane sequences from 
the neural weight matrix as explained below. Also, our choice 
of 1 hidden  neuron was reasonable  compared to previous neu- 
ral net models that have used either 2  hidden  neurons (Holley 
& Karplus, 1989), or 0 hidden neurons -a Perceptron model that 
directly connected the  input layer to 2 output neurons (Kneller 
et al., 1990). 

Biphasic nature of neural network learning 

A learning curve was generated for each of 12 individual neu- 
ral networks by plotting the number of correctly assigned train- 
ing facts as a function of the number of iterative cycles through 
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Fig. 1. Neural network learning curves. The biphasic nature of the learn- 
ing curve becomes more obvious as  the size of the training set increases. 
The numbers 1-7 and 10-12 identify the corresponding neural networks 
as described in Table 1. 

the training  set. Figure 1 shows learning curves from 10 differ- 
ent neural networks trained on various-sized training sets. It can 
be  seen that  the learning curves had  both a steep initial portion 
and a  more  gradual  tail. 

This biphasic nature of learning was more obvious as the size 
of the  training set was increased (Table 1). In all but neural net- 
work 1, assignment of peptide sequences in the  training set  was 
correct  more than 50% of the time after  the first cycle, which 
would be expected in a network with only 2 possible outputs. 
But the level of 90% correct training was reached in less than 
half of the  total number of iterations, which indicated a  non- 
linear learning curve. By  way  of comparison with a linear learn- 
ing  curve starting at same level of 50% correct training, the 90% 

Table 1. Summary statistics of neural network learning 
based on the size of the  training set 

Network Training  Iterations  Iterations  Iterations Test Percent 
number set size at 50% at 90% at 100% set size correct 

1 
2 
3 
4 
5 
6 
7 

10 
11= 
12b 

214 
266 
47  1 
664 
785 
945 

1,078 
1,445 
1,563 
1,751 

10-11 - 
0- 1 
0- 1 
0- 1 
0- 1 
0- 1 
0- 1 
0- 1 
1-2 
1-2 

-15 
7-8 

11-12 
9-10 

11-12 
9-10 
9-10 
2-3 
2-3 
2-3 

20 24 75 
23 30 80 
32 52 83 
30 74 92 
24 81 94 
20 105 98 
18 120 95 
11  161 96 
13  174 96 
10 195 87 

a Network 11 used a  training set with the lipid interface set between 
the third and fourth  amino acids in the 25-residue sequences. Networks 
1-10 used training sets with the lipid interface set between the seventh 
and eighth amino acids. 

bNetwork 12 used a  training set with the first amino acid of the 
25-residue sequence set at the  third position inside the lipid interface. 
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level would be expected to be reached after 80% of the  total 
number of iterations. 

Effects of training set size on test set sorting accuracy 

Training set size had a  nonlinear effect on test set sorting accu- 
racy (Table 1). Network 1 was 75% accurate. This network was 
trained with 214 protein sequences, which was roughly half the 
number of the 500 input neural connections. Test  set sorting ac- 
curacy increased as a function of training set  size until it reached 
a maximum of 98% with network 6, which used a training set 
about twice the size of the 500 input neural  connections. Fur- 
ther, there was no real increase in the level of sorting accuracy 
(96%) with network 1 1 ,  which used a training set roughly equal 
to 3 x  the  number of input neural connections. 

Previously reported  neural network studies have been con- 
cerned with prediction of secondary structure from primary 
structure  information. Our goal is a  more limited one: train  a 
neural  network to distinguish a whole transmembrane helix, as 
a unit,  from globular peptides of the same size. This is a  sort- 
ing problem. Nevertheless, it is useful to compare our networks 
to those other studies as benchmarks. Based on those previously 
reported  studies, the number of training set sequences per neu- 
ral connection has been shown to play an  important role in net- 
work learning.  In the Bohr study (Bohr et al., 1988), a  neural 
network was created with about 40,000 total neural connections 
(1,020 input, 40 hidden, and 2 output neurons) and was trained 
on a database containing about 15,000 peptide sequences. This 
resulted in a  prediction accuracy of about 73% for  the  amino 
acids  comprising the transmembrane helices  in rhodopsin.  In 
that case, there were 2-3 X more neural connections than train- 
ing set sequences. This overabundance of neural connections re- 
duces the need to abstract  information  from the training set and 
can lead to possible memorization of the  training set resulting 
in a limited ability to predict a  nonhomologous testing set.  In 
the Kneller study (Kneller  et al., 1990), a neural network was  cre- 
ated with 819 neural connections (273 input, 0 hidden, and 3 out- 
put neurons) and was trained with a database of about 20,000 
peptide sequences. This resulted in an improved prediction ac- 
curacy of about 79% for  amino acids comprising the helical re- 
gions in proteins of the all-a-helix class. In our study we created 
a network with 505 neural connections (500 input, 1 hidden, and 
2 output neurons) and trained it with a database of 1,563 pep- 
tide sequences in network 1 1 .  This resulted in a test set sorting 
accuracy of about 96%. In our case, having more than 3 x the 
number of training sequences than neural connections forced the 
network to abstract information  from  the training  set.  This  al- 
lowed a  better  chance of high test set sorting accuracy with a 
nonhomologous testing set and a high chance of test set sort- 
ing accuracy with a  homologous test set. 

Effects  of sequence homology on test set sorting accuracy 

Our best test set sorting  accuracy was between 95 and 98%, 
which probably reflects the high homology between proteins in 
our training and test data sets. Reports from other workers using 
both ternary and binary models have suggested that there may 
be a limit to the degree of discernment possible when neural net- 
works are used for predicting protein  structure. The limits of 
prediction accuracy tend to increase as a  function  of homology 
between the training and test data sets. The  ternary  problem is 

to distinguish between amino acid sequences that comprise a- 
helices, 0-sheets, or random coils. Results of  neural networks 
applied to that problem have  been reported between 63 and 64% 
(Qian & Sejnowski, 1988; Holley & Karplus, 1989) and a limit 
of 65% has been suggested (see  review  by Hirst & Sternberg, 
1992). For binary models such as predicting a-helix vs. non-a- 
helix (Hayward & Collins, 1992) or &turns vs. non-0-turns 
(McGregor et al., 1989), there has been proposed  a theoretical 
limit  of 73-78%. The improvement of the binary model  over the 
ternary model can be ascribed purely to  the reduction in the 
number of predictable classes  (Kneller  et al., 1990). These theo- 
retical limits were determined using a minimum of homologous 
sequences  in the training and test data sets. When homology was 
increased, prediction accuracy increased. In a ternary model, the 
prediction accuracy rose to 79% when using a class of proteins 
that contained nearly  all a-helical structure (Kneller  et al., 1990). 
Based on  the  proportions  from these theoretical limits, we cal- 
culated a new theoretical limit of 89-95% for the prediction ac- 
curacy of a binary model when there is a similarly high degree 
of homology. The test set sorting accuracy of our binary model 
(95-98'7'0) falls just at  and beyond the upper level of this new 
theoretical limit, which may mean our level  of homology is  even 
higher than  that used in Kneller's study. 

Effects of lipid membrane placement in the training set 

Placement of the lipid interface caused no effect on  the learn- 
ing curve. There was no difference when training set sequences 
were trimmed so that  the inside lipid interface fell between the 
seventh and eighth amino acid with no outside lipid interface 
(network lo), or between the third and  fourth position includ- 
ing a small part of the outside lipid interface (network 1 l),  or 
when the inside lipid interface was absent and a 7-member tail 
was included from  the outside lipid interface (network 12). Ta- 
ble l shows similar training summary statistics for networks 10, 
1 1 ,  and 12, and Figure 1 shows similar learning curves for these 
3 networks as well. On  the  other  hand, there was a  reduction 
in test set sorting accuracy when the inside lipid interface was 
removed from  the training set sequences. The test set sorting ac- 
curacy fell from 96% (networks 10 and 11) to 87% (network 12). 
This is taken to mean that there was a loss of important struc- 
tural  information when the inside lipid interface was removed 
that was not compensated by the inclusion of amino acids from 
the outside lipid interface.  This may support  the idea that in- 
sertion of the helix is from  the inside and the major amino acid 
sequence information for stopping insertion is on the inside  lipid 
interface. 

Training with added noise 

Because we used a symbolic rather than a numeric representa- 
tion of the  amino acid  sequences, an individual input neuron had 
only 2 possible values. It was either on or off, e.g., the neuron 
representing alanine at position 22, neuron A22, had  a discrete 
value  of either 0 or 1 .  In an attempt to give input neurons a more 
continuous scale, +5To noise was added to  the training data set. 
Addition of noise is a built-in option with  BrainMaker software. 
We asked the question whether addition of noise to  the  data 
would in some way enhance learning rate or test set sorting ac- 
curacy of a  neural  network.  Figure 2 shows the comparison  of 
neural  networks 8 and 9. Both were trained to 100% with the 
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Fig. 2. Effect  of  adding + 5 %  noise  to the training  set. No noise  was 
added to network 8 (A), but noise  was  added  to  network 9 (B). An in- 
crease in the time to  100%  training  was seen in the learning curves of 
network 9. Both  networks  used the same  initial  training set with 1,123 
peptide sequences. 

same  training set containing 1,123 peptide sequences. It can 
readily be seen that training with added noise took  about 4.5 X 

longer than without added noise. Comparison of the 2 training 
methods  indicated no improvement in test set sorting accuracy 
(Table 2). Network 9 was trained with added noise and correctly 
assigned 91% of the test set.  This was below the 94% level of 
network 8, which used the same  training set but with no  added 
noise. 

Other factors in network learning 

In addition to the use  of  highly homologous proteins in our  data- 
base, our high test set sorting accuracy may also have been the 
result of 2 other  factors. The first  factor to consider is the 
method of database analysis. In the previously reported  neural 
network studies, sliding windows of different sizes  were used to 
scan the databases: 13 residues (Qian & Sejnowski, 1988; Kneller 
et al., 1990), 17 residues (Holley & Karplus, 1989), or 51 resi- 
dues (Bohr et al., 1988). All  of the amino acids  in a window  were 

Table 2.  Summary statistics of neural network learning 
based on the addition of noise to the training set 

Network  Training  Iterations  Iterations  Iterations  Test  Percent 
number set size at 50% at 90% at 100Vo set size  correct 

8 a  1,123 0-1 9-10 21 125 94 
9 b  1,123 2-3 1-8 95 125 91 

a No added  noise. 
Five  percent  added  noise  in  the  training  set. 

used to  train  the network to assign the secondary structure of 
the central amino acid. In  our  study, preset slices of 25 residues 
were taken as a  unit and assigned to either the  transmembrane 
helical group or not. We did not consider each individual amino 
acid. Our study  also used no sliding or overlapping sequences. 
Each consecutive sequence of 25 residues was judged as a sep- 
arate unit to be a  transmembrane helix or  not. 

The second factor may  have  been the reading frame direction. 
Although not explicitly stated in the previous studies, it  is as- 
sumed that all of the sequences were read in the same direction, 
from N-terminal to C-terminal. In our  study,  the helical  regions 
were aligned from inside to outside the membrane. This align- 
ment may have increased the  amount of information built into 
the training data set and made test set sorting accuracy higher. 

Testing a fully trained network 

No network reported here reached a test  set sorting accuracy of 
100%. It is useful to examine those sequences that were falsely 
sorted. Table 3 presents the false-positive and false-negative 
assignments for neural network 1 1 ,  which had  a 96% test set 
sorting  accuracy.  There were 2 mislabeled transmembrane he- 
lical sequences (1-2) and 5 mislabeled nontransmembrane se- 
quences (3-7). The value of the helix to non-helix ratio, shown 
in Table 3,  was a relative measure of how  closely a given test se- 
quence resembled the important weights determined by the net- 
work during the training session. These ratio values consisted 
of a scale from 0 to 8 and were rounded off to the nearest whole 
number.  A sequence that fully matched the important trans- 
membrane helical training weights had  a ratio of 8/0, whereas 
a sequence that fully matched the  important nontransmembrane 
training weights had a ratio of 0/8. The mislabeled sequences 
failed to match  the  proper  training weights. Sequence 7 came 
from  the precursor peptide region of human tumor necrosis fac- 
tor. In general, the precursor peptide region  is similar to a  trans- 
membrane helix but is usually longer than 18-20 amino acids. 
Other precursor peptide regions were included in the  database, 
but  none of those were falsely labeled, as was sequence 7.  

Weight table matrix of trained network 

A fully trained neural network is characterized by the neuron 
weight matrix that  forms as a result of training. An example of 
a weight matrix is presented as a Hinton diagram for network 
1 1  in Figure 3,  where weights range in size from -3 to 3. The 
matrix gives the relative importance of each of the 20 amino 
acids at each position of the 25 residue peptides. Open boxes  rep- 
resent positive weights that favor classifying the sequence as a 
transmembrane helix structure, whereas closed  boxes represent 
negative weights that support classifying the sequence as a  non- 
transmembrane  structure. 

Generalized sequences from weight table matrix 

Because all neural networks in this  study used a single hidden 
neuron, it was possible to make direct comparisons of the neu- 
ron weights for each amino acid at any given position in the 
25-residue training sequence. By taking the  amino acid at each 
position with the largest positive and largest negative value, we 
constructed the neural network’s “generalized” transmembrane 
and “generalized” nontransmembrane peptides (see Table 4). For 
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Table 3. Listing of  false-positive  and  false-negative sequence assignmentsa 

No. Proteinb Sequence structure (25 aa) True assignment Ratio 

1 Cytochrome oxidase subunit I ,  Escherichia  coli AVPVYYDVDEDFSKVIWTIIMGAFG Helix 0/7 
2 Cytochrome oxidase subunit 111, yeast TAGHHVGYETTIIYTHVLDVIWLFL Helix 6/2 
3 Alcohol dehydrogenase, rabbit  liver VIGRLDTVVAALLSCHGACGTSVIV Nonhelix 513 
4 Glutamate dehydrogenase, bovine, DEBOE ADKIFLERNIMVIPDLYLNAGGVIV Nonhelix 4/4 
5 Granulocyte colony-stimulating factor receptor, mouse TQAFLFCLVPWEDSVQLLDQAELHA Nonhelix 216 

7c Tumor necrosis factor receptor, human  preprotein LLPLVLLELLVGIYPSGVIGLVPHL Nonhelix 810 
6 Lactate dehydrogenase, Bacillus  stearothermophilus, DEBSLF QIIEKKGATYYGIAMGLARVTRAIL Nonhelix 810 

a False positives were nonhelical sequences classified by the neural  network as belonging to the  transmembrane  helical group. False negatives 
were helical sequences misclassified as nonhelical. Results from the test data set for neural  network 1 1  are shown below where 7 of the  174  test 
sequences were incorrectly labeled. Correct  structure assignment is listed as well as the  determined ratio of helix/nonhelix weights, upon which the 
incorrect assignment was made. Expected  ratio for a correctly  assigned  transmembrane  helix equals 8/0; expected ratio for a correct  nontransmem- 
brane helix equals 018. 

bAll sequences are listed as used  in the database by  neural  network 1 1 :  from N-terminal to C-terminal including no. 1 ,  which  is  presented  in 
the reverse direction from C-terminal to N-terminal. 

Sequence for no. 7 is  part of the preprotein sequence. 

this purpose, 4 of the later networks were  used  because  they  were 
trained with sufficient numbers of amino acid  sequences to merit 
good generalization of training set information.  There were be- 
tween 2 and 3 x the number of training sequences compared to 
the number of input  neurons in these networks. 

Generalized transmembrane helices 

For  the sake of comparison,  the generalized sequences in Table 4 
were  aligned at the lipid membrane. Generalized  sequences from 
networks  8 and 10 had  a 7-member tail of amino acids on  the 
inside of the lipid membrane and  no  amino acids on  the outside 
membrane interface. The generalized sequence from network 11 
had a 3-member tail on  the inside and a 2-member tail on  the 
outside lipid interface.  The generalized sequence from network 
12 had no amino acids on  the inside and a 7-member tail on the 
outside of the lipid membrane. The generalized transmembrane 
sequences contained  a  polar region near the inside lipid inter- 
face, a  hydrophobic sequence running the length of the lipid bi- 
layer, and a  terminal region of identical amino acids. The 
amphipathic  nature of the helix with a charged lipid interface 
region and a  hydrophobic  body was the expected result as de- 
scribed by others  (Rao & Argos, 1986; Hartmann et al., 1989; 
Jones et al., 1992; von Heijne, 1992). 

The inside  lipid boundary region of the generalized transmem- 
brane helices contained  a triplet sequence, K-R-F, that spanned 
the lipid membrane. The body  of the generalized transmembrane 
helices contained a phenylalanine immediately  following the K-R 
doublet as the first residue inside the lipid layer and  further con- 
sensus hydrophobic residues of 2 isoleucines and 2 other phe- 
nylalanine residues. The presence of these residues supports  the 
observation that leucine, isoleucine, phenylalanine, and valine 
make up  about 50% of the residues of  transmembrane proteins 
(von Heijne, 1981). This is not to say that all transmembrane 
helices contain the same  features as  the generalized transmem- 
brane helices, but that these features were landmarks  for  the 
neural network analyses. 

The idea that phenylalanine supports  the  formation of heli- 
cal structure has  also been shown in the study of protein  fold- 
ing patterns predicted by neural networks using amino acid 

composition data (Dubchak et al., 1993). That study  also  indi- 
cated that  both  tryptophan  and lysine disfavored  predictions 
of the protein class containing  the folding pattern known as 
4-a-helical bundles. 

Near the outside lipid interface, the generalized transmem- 
brane helices  were found to contain tryptophan. This residue  has 
been previously reported as often  found at the  boundary region 
of the lipid interface (Reithmeier & Deber, 1991). Tryptophan 
appears  to  cap the  outside end of the helix and may provide a 
role in  helix orientation when  it  is  initially inserted into  the mem- 
brane. Likewise, the presence of the K-R doublet may provide 
a  strong stop message for  the helix insertion process. 

The generalized transmembrane helices also seem to  support 
the “positive inside rule” of more positive charged residues on 
protein loops that  are inside the lipid membrane than  on  the out- 
side loops (von Heijne, 1992). On the 4 generalized transmem- 
brane helices, there were 9 positive residues of a total of 17 on 
the inside portion of the peptide chain including the K-R dou- 
blet. On  the  other  hand, of the 9 residues on  the outside por- 
tion, there were no positive residues. Unfortunately this was not 
a balanced comparison, because there were not  equal  numbers 
of amino acids on  both the inside and outside of the lipid mem- 
brane. Only 2 generalized transmembrane helices  were long 
enough to represent residues on the outside of the lipid mem- 
brane. Nonetheless, the generalized transmembrane helices do 
not contradict the positive inside rule. 

Generalized nontransmembrane sequences 

The generalized nontransmembrane sequences contained  a re- 
gion rich in cysteine corresponding to  the inside lipid portion 
of the generalized transmembrane helices. The main body of the 
nontransmembrane sequences, corresponding to the transmem- 
brane  spanning region, contained 17-18 charged residues com- 
posed  of 50% lysine and arginine, 25% glutamate and aspartate, 
and 25% glutamine and asparagine.  The  outside lipid portion 
also  contained charged sequences as well as cysteine residues. 

The generalized nontransmembrane sequences should not be 
considered real peptides in the sense that they represent all other 
peptides of this length. Rather,  the generalized nontransmem- 
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Fig. 3. Hinton diagram of neural  network 1 1  weight matrix. The 20 amino acid types are  arranged vertically. The position of 
each amino acid in the 25-residue window is represented horizontally. Open boxes indicate weights that favor transmembrane 
helix structure. and closed boxes disfavor that structure. 

brane sequences should be thought of as the logical converse of 
the generalized transmembrane helices. Amino acid residues in- 
cluded in the nontransmembrane sequences are those least likely 
to be found in the transmembrane helices. The presence of those 
amino acids in the positions as shown by the nontransmembrane 
sequences were important landmark residues used by the neu- 
ral network in order  to categorize a  peptide as a  nontransmem- 
brane sequence. 

Proline was not  one of the most important residues in distin- 
guishing the generalized nontransmembrane sequences, even 

though it  is thought to break an  a-helix by imparting a 30" bend 
in  the otherwise linear helix. The absence of proline in the gen- 
eralized nontransmembrane sequences is probably due  to  the 
fact that proline residues occur naturally in some transmem- 
brane helices (Brandl & Deber, 1986; Williams & Deber, 1991). 
One model of the G-protein-linked receptors shows proline res- 
idues in 4 of the 7 transmembrane helices and suggests that  the 
inclusion of proline in the helix allows for greater conforma- 
tional responsiveness during ligand binding than does the rigid 
helix (Liao et al., 1989). Therefore, the neural networks correctly 
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Table 4. Generalized  transmembrane  and  nontransmembrane 25 residue  sequences 
as  determined from 4 different neural networksa 

Network 
number Inside I----------- Lipid bilayer, 20 residues  wide -----------/ Outside 

8 
10 
1 1  
12 

8 
10 
1 1  
12 

Transmembrane sequences ... 0 .  . 0 . .  

K W P K F K R F Y H I I I I C L F V L L I M L W M  
R W Q K I K R F I M W I L I I I F A L F C V F W W  

H K R F F W I I Y I L L F F F I F Y F W W M W W F  
Y V L C F L C F F L F T F F W W L W M D I F F T I  

Nontransmembrane sequences . .. .. .. . 
C C W C D C D K D K K N Q K K Q K D D E E K K K E  
E D H Q C P V K S D K E R R K D H R D E Q R K E R  

C C C K D D K N E R K R Q E D R Q D R E R D D Q C  
D K R K R K R K Q D E E K R E Q K D H C R D T D H  

a A indicates at  least 3 out of 4 identical amino acids in each sequence at  that position. 

afforded proline a lower  weight  in distinguishing the transmem- 
brane helix from  the  nontransmembrane sequences. 

Predictions of transmembrane  helices 
in bacteriorhodopsin 

Even though the neural networks reported here  were trained for 
a  different  purpose  (that of discerning the key elements of a 
transmembrane helix), we attempted to use neural network 10 
to predict the placement of the 7 transmembrane helical  regions 
in bacteriorhodopsin as a way of showing the limitations of the 
training  method. The bacteriorhodopsin sequence was written 
as all possible 25-residue peptides starting with position 1, me- 
thionine (M) of the precursor protein.  This  produced 238 over- 
lapping test sequences that were read in both the N-terminal and 
then  the C-terminal directions. Figure 4 shows the actual posi- 
tions of the 7 transmembrane regions (Kyte & Doolittle, 1982; 
von Heijne, 1992). Also shown are 2 sets of transmembrane he- 
lix  index values plotted as  a function of the first amino acid po- 
sition of the test peptide. The transmembrane helix index has 
a range of 0-8, where 8 is the most probable  transmembrane 
peptide. In bacteriorhodopsin, like many other G-protein cou- 
pled receptors, the first transmembrane helix  is inserted with the 
C-terminal end on the inside  of the lipid bilayer. Subsequent he- 
lices alternate insertion orientation with the second helix being 
inserted N-terminal first, and the last inserted C-terminal first. 
With an ideal prediction system, it  would  be anticipated that  the 
neural network would correctly find the 7 bacteriorhodopsin 
transmembrane sequences, that 4 helices (1,3,5,  and 7) would 
be found only by reading from  the C-terminal direction, and the 
remaining 3 helices (2,4, and 6) would be predicted only by read- 
ing from the N-terminal direction. In reality, network 10 found 
a great number of false-positive  sequences forming, more or less, 
a distribution around the actual start of the transmembrane se- 
quences. This overabundance of false-positive sequences is due 
to  the  nature of neural network training and not to  the multi- 
helical nature of the protein. All our networks were trained with 

10 . . . . . . . . . . . . . . . . . . . . . . . .  

9 4  B N-terminal 

0 20 40 60 80 100 120 140 160 180 200 220 240 

10 . . . . . . . . . . . . . . . . . . . . . . . .  

x 9 4  c C-terminal 

0 20 40 6 0  80 100 120 140 160 180 200  220 240 

Rhodopsin  Sequence 

Fig. 4. Prediction of 7 transmembrane  helices  in  bacteriorhodopsin  by 
network 10. A: The recognized  transmembrane  spanning  regions  in  the 
protein  (Kyte & Doolittle. 1982; von Heijne, 1992).  Numbering  begins 
with  the 13-amino acid  precursor. B: The  determined  transmembrane 
index  value of the  238 peptides. Each  peptide  was  taken from the  pri- 
mary  structure of bacteriorhodopsin using a sliding  window of 25 resi- 
dues  and  read  from  the  N-terminus. C: The  transmembrane  index  value 
for the same 238  peptides  read  in  the  C-terminal direction. 
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discrete and nonoverlapping  peptide sequences. In  this  type of 
training, a sequence of continuous amino acids running from 
positions n . . . n + 25 would be assigned to the same structural 
class (HELIX or NON-HELIX) as  the displaced, overlapping 
sequences running from positions n + 1 . . . n + 26 or n + 2 . . . 
n + 27 or even n - 1 . . . n + 24 or n - 2 . . . n + 23, as well 
as other overlapping but displaced sequences. In  order to make 
a useful neural network for in situ prediction of the constitu- 
ent  amino acids in the transmembrane helical regions of a  pro- 
tein, our future work will have to include  training with sliding 
windows for centroid amino acid prediction using overlapping 
peptides from both  the  transmembrane  and nontransmembrane 
groups. 

Conclusions 

The main result of this work is that it provides another exam- 
ple of how neural networks are useful to protein scientists in- 
terested in analyzing secondary structure. Previously, the use  of 
neural networks had been confined to those scientists with com- 
puter  backgrounds  strong  enough to permit them to write their 
own neural network programs. Now commercial neural network 
programs are available that have many built-in features. 

Our work with proteins  containing  transmembrane helices 
shows that even a simple neural network containing only a sin- 
gle hidden neuron is useful in analyzing transmembrane  struc- 
ture. The use of such a  neural network leads directly to  the 
creation of “generalized” structures that have heuristic value as 
model  transmembrane helices. 

One of the limits of using neural networks for protein  struc- 
ture analysis or prediction is the need for a large training set  with 
as few homologous sequences  as  possible. This limitation should 
be overcome in the near future as the size of the international 
protein  databases  continues to increase. A second limitation to 
structure prediction in general is whether any  method, includ- 
ing neural networks, based only on local amino acid sequences, 
can give 100% predictions of secondary structure  (Hayward & 
Collins, 1992). This fundamental problem may require sequence 
information from not only local but also more distal regions of 
a  protein.  This  area  of research may also be explored by neural 
networks. 

Methods 

Database 

The database in its final form consisted of 185 transmembrane 
proteins (928 transmembrane helical sequences) and 131 other 
proteins (1,018 nontransmembrane sequences)  (see Diskette Ap- 
pendix). All primary sequences were entered into  the  database 
as strings of 43 consecutive amino acids. Each amino acid was 
represented using the  standard 1-letter code (e.g., A,  alanine; 
C, cysteine; . . . Y, tyrosine). Later in processing the  database, 
these sequences were truncated to 25 amino acids and numbers 
were added to  the letters in order  to indicate sequence position 
(e.g., A1 T2 K3 . . . G25). 

Transmembrane proteins with known amino acid sequences 
and known helix orientations were taken  from  the literature. 
There were 3 classes  of transmembrane proteins. The first class, 
49 proteins (26%), consisted of single-pass receptor proteins or 

membrane-linked binding proteins. The second  class, 75 proteins 
(41 Yo), consisted of 7-pass, G-protein-linked receptors includ- 
ing multiple members of the adrenergic, muscarinic, dopamine, 
odorant,  and opsin receptor groups (see  reviews by Findlay & 
Eliopoulos, 1990; Dohlman et al., 1991). The third class, 61 pro- 
teins (33’70), consisted of various multipass proteins containing 
2-15 spans, including multiple members of the ATPase,  ATP 
synthase, cytochrome 6 ,  and cytochrome oxidase groups (see re- 
view  by Rao & Argos, 1986). Transmembrane sequences were 
oriented in the  database  from inside to outside the membrane. 
This meant that  about half were written in the usual N-terminal 
to C-terminal direction and the  other half were written in the 
reverse direction of C-terminal to N-terminal. Once oriented 
in this manner,  the 43-residue, transmembrane sequences were 
aligned so that the known  lipid boundary came between the 12th 
and 13th amino acid. 

There were 13 1 proteins (I  ,018 sequences) in the nontrans- 
membrane group. These were taken from  the literature (Levitt 
& Greer, 1977) and  from  the PIR-International  Protein Se- 
quence Database (release 35, January 1993, on Protein Science 
Volume 1 CD-ROM). Functional enzymes, soluble proteins, and 
precursor  proteins were used, as well as  the globular regions of 
single-pass transmembrane proteins (see  Diskette Appendix). All 
nontransmembrane sequences  were entered into  the  database as 
strings of 43 amino acids written in the usual order of N- to 
C-terminal. None of these strings were reversed. The names of 
all  proteins used in the complete  database are provided on the 
Diskette  Appendix. 

On average, every protein in  the initial amino acid database 
(from which both  the training set and test  set  were derived) had 
approximately 2 additional  homologous sequences. In other 
words, 62% of the initial amino acid database consisted of ho- 
mologous sequences. In some specific cases, the number of ho- 
mologous sequences was greater than  the average. There were 
7 examples of  Na-K ATPase and 7 examples of both myoglo- 
bin and ribonuclease. In  other cases there was only 1 example 
of a particular protein: epidermal growth factor receptor, MalF 
transport  protein,  and papain.  In our experiments, the use of 
homologous sequences was necessary in order  to increase the 
training set  size to 2-3 x the number of neural connections. Un- 
doubtedly as the size of the  protein database grows, it will be 
possible to achieve the high numbers of  sequences  necessary for 
good generalization without resorting to  the use of homologous 
sequences. 

Neural net works 

Neural networks were created using the commercially available 
program Brainkfaker, standard version 2.5, from California Sci- 
entific Software, Nevada City, California. This is a general neu- 
ral net program that allows for creation of an  input  layer, up 
to 6 hidden layers, and  an  output layer. We applied this general 
program to our database of protein sequences. The standard ver- 
sion has a limit  of 512 input neurons. There is a professional ver- 
sion with greater input  and  total neural capacity. 

Brainkfaker, as with other neural network programs, creates 
a trainable, artificial, neural-like network consisting of multi- 
ple interconnected units. Because there is a general resemblance 
to  the  structure of a biological nervous system, terms are  bor- 
rowed freely when describing a  mathematical  neural network 
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(Bohr et al., 1988). Such  a network will produce an  output in 
response to  an  input. Each unit is called a  neuron;  it receives in- 
put  from  other connected neurons and passes on  an  output  to 
different  neurons.  The  gating  effect of an individual  neuron 
(whether it fires or not) is determined by the weighted sum of 
input values multiplied by a  continuous  transfer  function. Dif- 
ferent types of transfer  functions can be used. There are linear, 
triangular,  and Gaussian functions, but  the most  common is a 
sigmoidal transfer  function (Lawrence, 1993). 

For our purposes, BrainMakerwas used to create feed-forward, 
back-propagation networks with a single hidden layer using a 
sigmoidal transfer  function.  Feed-forward means that  the neu- 
rons were arranged in a layered structure with the  input neurons 
on the bottom connected to the single  hidden layer, which  in turn 
was connected to the  output layer. Back-propagation means that 
readjustment of the neuron connections (weights) was based on 
a steepest-descent algorithm  according to the output errors 
(Rumelhart et al., 1986). 

The chosen size of our neural networks was a  compromise 
made between the expected size  of a transmembrane helical pep- 
tide (18-20 amino acids) and  the number of allowable input neu- 
rons with the  standard version of BrainMaker. All neural 
networks had  the specific structure of 500 input  neurons (20 
amino acids x 25 positions), 2 constant firing threshold neurons, 
and 1 hidden neuron and 2 output neurons labeled HELIX  and 
NON-HELIX. The 2 constant firing, threshold neurons were lo- 
cated,  one each, at  the input and hidden layers. The  addition 
of threshold neurons is a built-in feature of BrainMaker that al- 
lows for some output even  if the values from all other input neu- 
rons are otherwise 0. The training of each successive neural 
network was begun after  more protein sequences were added to 
the previous sequence database. This was followed by training 
and testing the new network with no carryover from  the previ- 
ous network. Each new network was independent of the others. 
This process was repeated 1 1  times, forming 12 different neu- 
ral  networks. The exception was that network 8 and network 9 
were trained on  the same database but with differences due  to 
the  addition of noise to the data set  used for training network 9. 

Training sets 

Before using the  amino acid data set, an  adjustment was made 
so that  the original 43-residue sequences were trimmed to a 
length  of 25 amino acids. This was done in order  to accommo- 
date  the largest  possible BrainMaker input restriction of 500 neu- 
rons (25 long x 20 amino acids). Trimming was done by cutting 
off a few amino acids from each end of the sequences. In  train- 
ing sets prepared for networks 1-10, amino acid sequences were 
trimmed so the lipid boundary fell between the seventh and 
eighth amino acid. This allowed the network to train with some 
representative residues from inside the lipid boundary even 
though these sequences were not long enough to penetrate the 
whole lipid bilayer. In the training set prepared for network 1 I ,  
sequences were trimmed so the lipid boundary fell between the 
third and  fourth  amino acids. Cropping the training set closer 
to the lipid boundary allowed network 11 to train with  sequences 
that extended completely through the lipid bilayer in most  pro- 
teins and also contained  some representative amino acids from 
outside  the lipid layer. The training set for network 12  was pre- 
pared so that  the first residue of the 25-amino acid sequences 
began at  the third residue inside the helix portion of the lipid 

bilayer. This allowed for a 7-member tail on  the outside  of the 
lipid layer. 

Test sets 

BrainMaker software  contains  a  subprogram, NetMaker, that 
converted the  amino acid sequences into a  training file format 
for BrainMaker. In  this process, 10% of the  amino acid se- 
quences were reserved in a test set that was subsequently used 
to determine how well the neural network had generalized in- 
formation  from the training set. Each network was trained and 
tested with a different data set. The percentage of correct se- 
quence assignments in the test set was recorded as  the test set 
sorting accuracy for each neural  network. 

BrainMaker software was constructed to train  a given net- 
work until 100% of the facts in the training set are learned. 
Training  tolerance was preset for each network at  the 0.1 level. 
This  meant  that when the  determined  output assignment 
matched the training  pattern to within 10% of the correct as- 
signment,  no further adjustments were made to  the neural- 
connection weight matrix (Lawrence, 1993). Testing tolerance 
was set at  the 0.4 level for networks 1-9 and  at  the 0.2 level for 
networks 10-12. This  meant that if the test sequence pattern 
matched the training set pattern within 40% (later, within 20%) 
then the  output assignment was made. 
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